
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Theory of the temperature-concentration phase diagrams of lyotropic
liquid crystals
P. Tolédano; C. E. I. Carneiro; A. M. Figueiredo Neto

Online publication date: 06 August 2010

To cite this Article Tolédano, P. , Carneiro, C. E. I. and Neto, A. M. Figueiredo(2001) 'Theory of the temperature-
concentration phase diagrams of lyotropic liquid crystals', Liquid Crystals, 28: 10, 1547 — 1551
To link to this Article: DOI: 10.1080/02678290110068956
URL: http://dx.doi.org/10.1080/02678290110068956

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678290110068956
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Liquid Crystals, 2001, Vol. 28, No. 10, 1547± 1551
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A phenomenological approach to the description of temperature–concentration phase diagrams
in lyotropic liquid crystals is proposed. It is based on the coupling of the power expansions
associated with the concentration variable, and the symmetry-breaking order parameters.
Illustrative, working and real, examples of phase diagrams found in lyotropic systems are
discussed.

1. Introduction hensive way. This is due, on the one hand, to the com-
plexity of the phase diagrams, but also to the intrinsicLyotropic liquid crystals contain at least two com-

ponents, one of which is a solvent and the other is di� culty of taking into account simultaneously the
eŒects of the temperature and concentration variables,formed by surfactant molecules having a hydrophilic head

group and hydrophobic alkyl chain tail(s) [1]. The mixing which give rise to transformation mechanisms of diŒerent
natures: (1) symmetry breaking transitions which are oftenof the two components may induce the spontaneous

formation of structures showing high degrees of positional of the reconstructive [7, 8] type; (2) concentration driven
transformations [9] which result in phase separation,and orientational order, which are accessed by changing

the concentration of surfactant and the temperature. without symmetry change.
The temperature–concentration phase diagram of a two-
component surfactant–solvent system has generally a 2. Theory
multi-eutectic topology [2], each phase displaying an

The aim of this paper is to show, in the case of a two-
optimal concentration and well-de� ned peaks in the phase

component lyotropic system, that an overall description
diagram. A typical phase diagram contains isotropic

of the corresponding temperature–concentration phase
(molecular, micellar or bicontinuous) phases, as well as

diagrams can be performed in the framework of a
anisotropic phases, e.g. with a lamellar, cubic, hexagonal, generalized Landau-type approach, in which the free
etc … or nematic ordering, and eventually the corres-

energy of the system is expressed in functions of a
ponding reversed phases, which are formed by inverted

variational concentration parameter and of the sym-
micellar aggregates [1, 2]. Two adjacent phases are in

metry-breaking order parameter(s). Let us introduce
most cases separated by a two-phase region of coexist-

the basic ingredients of our model through working
ence, i.e. by � rst order transitions [1]. There are a few

examples of temperature–concentration phase diagrams
exceptions, such as the uniaxial and biaxial nematic or of lyotropics. We consider � rst a lyotropic mixture
cholesteric phases which are separated by second order

formed by a solvent (W) and a surfactant (S), involving
transition lines [3].

only isotropic molecular and micellar solutions, denoted
Theoretical approaches to lyotropic liquid crystal

respectively (W, S) and (W 1 S). We take as the concen-
systems have focused on speci� c regions of their phase

tration variable the dimensionless quantity r 5 xS Õ xW ,
diagrams in which the phases can be related by a unifying

where xS 5 [S]/[S] 1 [W] and xW 5 1 Õ xS , the brackets
structural mechanism [4–6]. But there has been, to our [] designating the molar fraction. The free energy
knowledge, no attempt to describe theoretically the variety

density of the mixture can be written as W (Dm, T ) 5
of topologies found for the temperature–concentration FG (r, T ) Õ Dmr, where FG (r, T ) is the Helmholtz free
phase diagrams of lyotropic mixtures, in a compre-

energy per mole and Dm is the chemical potential con-
jugated to Nr, where N is the total number of moles
in the system. The equilibrium line separating two*Author for correspondence; e-mail: a� gueiredo@if.usp.br
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1548 P. Tolédano et al.

diŒerent lyotropic phases, denoted 1 and 2, is obtained is obtained for P 5 4, a3 < 0 and a4 > 0. It represents the
equilibrium line between the molecular and micellaranalytically by the common tangent construction method

proposed by Gibbs [10], which consists in expressing isotropic phases, which has a maximum at the critical
point C determined by the condition q3FG /qr3 5 0. Forsimultaneously the equality of the chemical potentials

(Dm1 5 Dm2 ) and the eŒective free energies [W (Dm1 , T ) 5 low and high concentrations, the line is bounded by
the direct and reversed critical micellar concentrationsW (Dm2 , T )]. This yields the equations:
(CMC and CMC¾ ), the direct and reversed micellar
regions forming a continuum. A diŒerent situation occursAqFG

qr B1
5 AqFG

qr B2
(1)

in the phase diagram shown in � gure 1 (b) which is
associated with a potential FG expanded around theand
eutectic concentration rE :

FG (r1 ) Õ r1 AqFG
qr B1

5 FG (r2 ) Õ r2 AqFG
qr B2

(2)
FG (r Õ rE , T ) 5

(T Õ TE )
2

(r Õ rE )2

where r1 and r2 refer to the respective concentrations
in phases 1 and 2. Solving equations (1) and (2) at 1

a3
3

(r Õ rE )3 1
a4
4

(r Õ rE )4 (4)
constant chemical potential for each temperature and
concentration requires explicit knowledge of the form of where TE is the eutectic temperature. Here, a3 and a4 are
FG (r, T ). In contrast to the standard form used for FG , divalent coe� cients, i.e. a3 coincides with the two values
which is expressed in terms of the free enthalpy for each of opposite signs taken by the slopes of T (r) at r 5 rE .
component and of the entropy of mixing, we shall assume In the same way the two values taken by a4 are deter-
that FG (r, T ) can be written as a power expansion of r, mined by the slopes of T (r) for r 5 rCMC and r 5 rCMC ¾ .
of degree P: In the phase diagram of � gure 1 (b) the direct and

reversed micellar phases do not overlap, and meet at the
FG (r, T ) 5

(T Õ To )
2

r2 1 �
P

n=3

a
n

n
rn (3) eutectic point E, at which the solution crystallizes. More

complex phase diagrams are obtained within the same
approach by using higher degree expansions of FG (r, T ).where the a

n
are constant phenomenological coe� cients,

and To is the temperature corresponding to r 5 0 on the The phase diagram shown in � gure 1 (c) corresponds to
a � fth degree expansion of FG around r 5 rE . It containsequilibrium line between phases 1 and 2. Figures 1 (a),

1 (b) and 1 (c) represent three among the phase diagrams both a critical point C (rc being determined by one of
the roots of the equation q3FG /qr3 5 0) and a eutecticobtained by solving equations (1) and (2) using speci� c

forms of FG (r, T ). Thus, the phase diagram of � gure 1 (a) point E. a3 is again a divalent coe� cient representing

Figure 1. Working examples of temperature–concentration phase diagrams in lyotropic systems. The diŒerent � gures (a) to (e) are
described in the text.
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1549T heory of lyotropic L C phase diagrams

the slopes of T (r) at r 5 rE . The univalent coe� cients whereas for T <T1 (r) one obtains: ge 5 Ô [(T1 (r)Õ T )/a4]1/2
and:a4 < 0 and a5 > 0 are � xed by the slopes of T (r) at

r 5 rCMC and r 5 rCMC ¾ .
For the description of liquid crystalline (anisotropic) F (r1ge , T ) 5 Õ

(T Õ Tc )2

4a4
Õ

d12 (T Õ Tc )
a4

r
lyotropic phases, one needs to take into account sym-
metry-breaking order parameter(s) . Assuming a single
component order parameter g associated with a trans- 1

(T Õ T ¾o )
2

r2 1
a4
4

r4 (12)
ition from the isotropic molecular or micellar mixture
to a homogeneous liquid crystalline lyotropic phase, with T ¾o 5 To 1 2d2

12 /a4 . The common tangent con-
denoted a, the general form of the corresponding Landau struction may then be applied to the minimized functions
expansion, truncated at the degree P ¾ is: de� ned by equations (11) and (12), i.e. by solving

equations (1) and (2) for the two phases which are stable
above and below the critical line T 5 T1 (r). Figure 1 (d )FL (g, T ) 5

(T Õ Tc )
2

g2 1 �
P ¾

m=3

am
m

gm (5)
shows the resulting phase diagram, for which the con-
ditions d12 >0, and Tc <To have been assumed. The phasewhere Tc is a critical temperature and the a

m
are constant

diagram is divided into two regions of similar topologiesphenomenological coe� cients. Therefore the total free
located on the right and left hand sides of the line ofenergy which includes the r and g variational parameters
equal concentrations r(T ) 5 0. Above T 5 T1 (r), wherecan be written as:
equation (11) holds, two isotropic molecular phases are
separated by the isotropic micellar phase; this is boundedW(Dm, T ) 5 Õ Dmr 1 FG (r, T ) 1 FL (g, T ) 1 FGL (r, g)
by an equilibrium line, the maximum of which coincides

(6 )
with the point of equal concentration rc (To ) 5 0. The a
and a ¾ phases are direct and reversed ordered lyotropicand
phases, with the same macroscopic symmetry, deter-

FGL (r, g) 5 d12rg2 1 d22r2g2 1 ¼ 1 d
nm

rngm (7 ) mined by the symmetry of the order parameter g. Their
lowest limits in temperature coincide with the eutectic

is the coupling free-energy, the d
ij

being constant points E and E ¾ , at which merge the equilibrium lines
coupling coe� cients. bounding a direct micellar W 1 S 1 a (or reversed

Let us illustrate the procedure which allows con- micellar S 1 W 1 a ¾ ) region of coexistence and a region of
struction of the phase diagram associated with a given coexistence of the a (or a ¾ ) phase, with a phase denoted
free energy by considering the working example with WS. In this phase, which is stabilized for r(T ) 5 0 (and

can therefore be observed only in the demixing regions
of coexistence with the a and a ¾ phases), one has anW(Dm, T ) 5 Õ Dmr 1

(T Õ To )
2

r2 1
a4
4

r4
equal amount of direct and reversed micelles.

More complex phase diagrams can be obtained by
1

(T Õ Tc )
2

g2 1
a4
4

g4 1 d12rg2 (8) the same procedure considering higher degree expan-
sions in r and g, or higher degree couplings. Figure 1 (e)
represents the phase diagram associated with the totalin which the cubic r-invariant a3 /3 r3 has been elimi-
free energy:nated by rede� ning the zero of r and the coe� cients

Dm, (T Õ To ) and a4 [9]. Minimizing the sum F(r, g, T ) 5
FG (r, T ) 5 FL (g, T ) 1 FGL (r, g) with respect to g, at W(Dm, T ) 5 Õ Dmr 1

(T Õ To )
2

r2 1
a3
3

r3 1
a4
4

r4 1
a6
6

r6
given r, one gets the equation of state:

ge (T Õ Tc 1 a4g2
e 1 2d12 r) 5 0 (9 ) 1

(T Õ Tc )
2

g2 1
a4
4

g4 1 d12rg2 1 d22r2g2.

and the stability condition:
(13)

T Õ Tc 1 2d12r 1 3a4g2
e > 0 (10)

It contains three ordered lyotropic phases (a, a ¾ and b )
having the same geometry. The a phase may represent,where ge denotes the equilibrium value of g. Equations
for example, a lamellar phase with thin W layers and(9) and (10) show that for T > Tc Õ 2d12r 5 T1 (r), one
thick amphiphilic layers. The a ¾ phase has the invertedhas ge 5 0 and:
geometry, and the b phase may present a smectic-type
layer periodicity requiring equivalent amounts of W andF (r, ge , T ) 5

T Õ To
2

r2 1
a4
4

r4 (11)
S. The phases are separated from the molecular solution
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1550 P. Tolédano et al.

by cigar-shaped regions of coexistence, and bounded the third degree in (r Õ rE ), and FG (r Õ rE , T ) has to be
at least of the � fth degree in (r Õ rE ):at low temperature either by regions of coexistence of

micellar solutions with the b phase, or by eutectic points

(E and E ¾ ).
FG (r Õ rE , T ) 5

(T Õ TE )
2

(r Õ rE )2 1
a3
3

(r Õ rE )3

3. Real mixtures
1

a4
4

(r Õ rE )4 1
a5
5

(r Õ rE )5. (14)
The procedure for construction of the phase diagrams

presented above allows a systematic description of the

phase diagram topologies found in real lyotropic mix- Simple analytical considerations deduced from the
tures. We shall illustrate this point by discussing two common tangent construction method, then show that
speci� c examples of phase diagrams found in lyotropics. (qT /qr)

r=rE
5 Õ a3 , i.e. a3 is a divalent coe� cient, the

We � rst consider the phase diagram exhibited by the values of which are determined by the slopes of T (r) on
sodium laurate–water system [11, 12], which is shown in the right and left hand sides of r 5 rE . The eŒective
� gure 2 (a). It has an almost double eutectic shape with values of a4 and a5 are given by the values of the tangent
three anisotropic lyotropic phases ( lamellar L

a
, inter- to the T (r) curve at r 5 rmin and r 5 rmax . The critical

mediate rectangular R
a
, and hexagonal H

a
) separated points C and C ¾ correspond to the concentrations

from the isotropic micellar solution by biphasic regions rc,c ¾ 5 Õ a4 /3a5 Ô (a2
4 /9a5 Õ a3 /3a5 )1/2.

of coexistence. A second step consists in determining the symmetry-
The phenomenological description of the phase breaking order parameters which describe the transitions

diagram of � gure 2 (a) can be made as follows. Firstly, the from the isotropic micellar solution to the L
a
, H

a
equilibrium T (r) curve, separating the isotropic micellar and R

a
phases. For that purpose, one has to take the

region from the ordered lyotropic phases, displays two following into consideration [13]. (i) The isotropic
maxima with an intermediate eutectic-type minimum. A (O(3))–lamellar (D

2h ) transition is depicted by one pair
of wave-vectors k

Ô
, with |k

Ô
| 5 p/d, where d is thepower expansion of T (r) should therefore be at least of

Figure 2. Illustrative examples of experimental temperature–concentration phase diagrams in lyotropic systems. The diŒerent
� gures (a) to ( f ) are described in the text.
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1551T heory of lyotropic L C phase diagrams

period along the normal to the lamellae. The two non- 4. Summary
A phenomenological approach to the temperature–vanishing components of the corresponding in� nite-

dimensional order parameter ful� l the equilibrium con- concentration phase diagrams of lyotropic liquid crystals
has been described, and shown to apply to experimentaldition g

k+
5 g

k Õ
5 g, which yields the eŒective free-energy:

examples of lyotropic systems. It is based on the coupling
of two types of variational parameters and free energies.FLa(g, T ) 5

(T Õ Tc )
2

g2 1
a3
3

g3 1
a4
4

g4. (15)
First, a concentration variational parameter r whose
corresponding free energy FG (r, T ) is a power expansion

(ii ) The two dimensional cylindrical mesophases H
a

and
of r. FG (r, T ) accounts for the transitions between iso-

R
a

require two pairs of wave-vectors [13] Ô k1 and Ô k2 tropic phases, as well as for the equilibrium T (r) curve
with |k1 | 5 |k2 |. One gets hexagonal (P6m) or C-centred

bounding the liquid crystalline region. Secondly, symmetry-
rectangular (Cmm) two-dimensional space groups for,

breaking order parameter(s) corresponding to standard
respectively, an angle c between k1 and k2 of 120 ß or

(Landau) free energies which depict the transition(s)
90 ß . In both cases the four non-vanishing components

form the isotropic micellar phase to the anisotropic
of the order parameters associated with the isotropic-

liquid crystalline lyotropic phases. Increasing the number
to-H

a
and isotropic-to-R

a
transitions ful� l the equili-

of surfactants or (and) solvents does not modify in an
brium conditions f1 5 f2 5 f3 5 f4 5 f for the H

a
phase

essential manner the method described here but increases
(and f ¾1 5 f ¾2 5 f ¾3 5 f ¾4 5 f ¾ for the R

a
phase). The corres-

the number of equations to be solved simultaneously.
ponding eŒective free energies FHa(f, T ) and FRa(f ¾ , T )
have the same form given by equation (15), g being

The Fundação de Amparo à Pesquisa do Estado de
substituted by f (or f ¾ ) and Tc by T ¾c (or T ¥c ). Accordingly,

São Paulo supported this work.
the total eŒective free energy to which the phase diagram
of � gure 2 (a) is associated is:
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